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Every clock has some response to temperature
change. Before we can compensate for temperature
variation we need to be able to measure actual
thermal response. If a clock changes period in
direct linear proportion to temperature change we
can use a single number to quantify thermal
response. This number would be expressed in, for
example, milliseconds (ms.) per degree centigrade.
Even if the response is not linear for a very wide
temperature range, a linear model may be a good
approximation for a narrow temperature range. In
this paper | will use data for ambient temperature
and pendulum period taken for each pendulum cycle
over an entire day to find an approximate thermal
coefficient for a specific electro-magnetically driven
clock. Since clocks have a certain thermal mass,
period response lags ambient temperature changes.
| also show how to model this effect.

Data comes from my second clock built in the
1970s and recently upgraded. Operation is nearly
identical to clock #7 described in HSN 1999-3. The
flexure is stainless steel, the rod is wood, and the
bob is stainless steel. This is a 120 beat system
with each full cycle of the pendulum taking about 1
second. Actually the clock is 2 minutes a day slow.
Data runs from a little before midnight for 24 hours
on February 10, 2000. Barometer variation during
that day is small (0.07 inch Mercury.) Statistical
tests do not support any barometric effect this day
so we can concentrate only on temperature.

The easiest way to cycle temperature for me is
to just use household ambient variations. Data
starts during a nighttime cooling period. At 5:30 am
the furnace come on. The furnace is off part of
midday, then comes on again, and is finally shutoff
for the night about 9 pm. Total temperature cycle is
just less than 5 degrees centigrade. Data is
averaged over 900 seconds, one-quarter hour.

Figure 1 shows the period (bold line) vs. ambient
temperature (fine line.) Period is in milliseconds.
There are a total of 93 data points. Notice that
during quick temperature changes the period lags
temperature by quite a bit. But temperature and
period are closely related.

Figure 2 shows an estimate of period (bold line)
based only on ambient temperature. Measured
period (fine line) is also shown. This estimate is
simply: period estimate equals temperature times
some coefficient plus some offset:

P.=aT, +b.

A spreadsheet (Excel) is used for all calculation
and plotting. | compute a value for ‘a” and ‘b’ using

function ‘linest.” ‘a’is 0.023 ms/°C. ('b’is just an
offset and isn't important here.) This is a huge
temperature effect of about 2 seconds per day per
degree C. A wooden rod and stainless steel bob
have an expected temperature coefficient of well
less than 0.005 ms/°C so there are other effects.

‘Linest’ fits the best possible straight line through
all 93 data points and returns the slope ‘a.” ‘Best’
means that the sum of squares of the differences
between sample data and estimated data is as small
as possible. Linest also indicates ‘goodness’ of fit.
Here this value is 0.93 with 1.00 being a perfect
match. Figure 2 also shows actual error at each
point. This error, in ms., is shown hatched.

Clearly heat doesn't flow into the system
instantaneously; it takes some time. The
temperature inside the system lags the temperature
outside the system. Heat flow depends on
temperature difference and on the ‘resistance’ of the
system to heat flow. So the T, used in the
estimating formula above should really be the
temperature of the system itself — Ts.

While it must be true that each clock part has a
different thermal response, | am going to lump these
together for now into a single ‘average’ value. Heat
transfer theory indicates that T will lag T.. Any
given T, is computed by taking an exponentially
decaying weighted average of the current and 7
previous T,s. Weighting factors that compute this
average are shown in figure 4. More points could be
included in the average, but 8 (2 hours) are enough
for now. This kind of average is a low pass filter.
Slow change passes right through while quick ones
are attenuated.

Weighting factors are chosen using an
exponential function of a single number —r'. A
small value gives a very quick decay and
corresponds to low thermal resistance. A larger
number represents slow system thermal response.
Figure 3 is a plot of ‘goodness’ of fit for P, using Tss
for various ‘r’ values. The best fit occurs when T is
filtered with an ‘r’ value of just less than 4. Figure 4
show the weighting factors for r = 3.8. In this case
about 61% of thermal effect takes effect in the first
3/4 hour. (.26+.20+.15+ = .61) See appendix for
much more on thermal lag spreadsheet modeling.

Finally figure 5 is like figure 2 except that
estimated period is derived from T, instead of T,.
The error is much smaller and the fit better (0.985.)
Because of the lag, T, is attenuated from T, and has
a smaller range (0.16°C less), now the temperature
coefficient is 0.025 ms/°C. (Same period variation in
a smaller temperature range.)
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Appendix: Thermal Lag with a Spreadsheet

This appendix shows how to use a spreadsheet
to approximate thermal lag in a clock. This is not
easy going, nor is the model perfect but | think it is a
useful, if limited, tool.

Heat transfer for unsteady-state systems is a
complex area. I'm not going to go very deep here.
Usually an ‘infinite plate’ example is used. A
uniformly hot, infinite steel plate is suddenly
exposed, at its one surface, to cool air. Whatis the
temperature profile in the plate as time passes? The
solution to the differential equation has exponential
shape. Our problem is much more complex. What
is the temperature at all points in say a pendulum
(flexure, rod, bob, etc) with change in ambient
temperature? The answer depends upon the
temperature difference and properties of air and
pendulum materials.

When ambient temperature changes, clock
temperature starts to change quickly but then the
rate of change slows exponentially. This
exponential change after ambient change is exactly
the same as the change in output voltage on a
resistor/capacitor circuit from input voltage change.

The graph (below) shows how voltage on a
capacitor varies with step input voltage change.

Output of RC circuit for Step Input with Increasing RC

Voltage and temperature are analogous. The
greater the product of resistance times capacitance
(the time constant), the longer it takes for the output
to equal the input. In a pendulum, a metal rod will
have a shorter time constant than a wooden one
because heat flows more easily into metal than
wood.

The equation:

=(t-x)

1 4
I/ompul (t) = ’R—C,—:[J/input (x)e ke dx

shows how to compute the voltage on a capacitor
given the history of voltages input to the RC circuit.
(V-voltage as a function of t-time. Xis a dummy
variable for integration from the beginning of time to
time t.

~(t-x)
The factor e ®¢ is 1 at x = tbut gets smaller
quickly as x — —o0 . In the case of a pendulum it
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gets so small in at most an hour or two that we can
simply let it be zero. The net effect in this equation
of factor 1/RC and the integral is a ‘weighted’
average of input voltage. R, C, and V have units
chosen to be compatible. They are really just scale
factors.

The effective temperature of the pendulum as a
function of air temperature history obtained by
sampled data taken by computer at fixed intervals
can be numerically integrated to approximate the
equation above. The number of points used ‘n’ is a
compromise between accuracy, difficulty, system
noise, and approximate thermal lag.

T,[i]= Z T.[i-nlW,.
T ,[i] is the effective pendulum temperature at

time i; T [i — n] is ambient sensor temperature at

time [i —n]. W, are exponential weighting factors

based on the thermal response ‘r’ (a term analogous
to the RC product above) of the pendulum The sum
of n+1 weighting factors adds upto 1. On a
spreadsheet this looks like:

r= 2

n 0 1 2 sum(

-n/r 0 -0.5 -1 exp(-n/n)):
exp(-n/r) 1 0.606531 0.367879 1.9744101
Whn 0.50648 0.307196 0.186324 sum(Wn)=1

WI[n] = [exp(-n/r)}/[sum exp(-n/r)]

Now, finally, to get pendulum temperature data
from ambient (sensor) temperature data:

Ts Tpr=2 Tpr=1 Tp r=4
19

19

19 19.000 19.000 19.000
20 19.506 19.665 19.419
20 19.814 19.910 19.746
20 20.000 20.000 20.000
20 20.000 20.000 20.000

The formula for “Tp r=2' is for say the 4" row:
=A4*0.50648+A3*0.307196+A2*0.186324

Note above how much slower Tp approaches 20
degrees as r increases. Also notice that Tp starts
with the third Ts for n=2. In the paper n=8.

In the paper the entire pendulum system was
‘lumped’ together which is only a first approximation.
Individual terms for flexure length, rod length, bob
length, bob buoyancy, flexure spring constant, and
mounting stiffness must be factors but experimental
data doesn’t allow these to be separated as yet.

The temperature sensor’s time constant is not
specified by the manufacturer because it is too
application dependent. In this paper, the clock’s
response is slower than the sensor’s.



