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Abstract

Air’s density changes pendulum period because buoyancy can slightly re-
duce gravity’s restoring force. Daily changes in temperature, barometric
pressure, and relative humidity all change air’s density and therefore clock
rate. Methods are given to compute air density from environmental mea-
surements and to compute the magnitude of the effect in most pendulums.
A design for a pendulum free of buoyancy error is given. Real environmental
data is applied to a hypothetical clock to show rate variation.

1 Buoyancy

Buoyancy is an upward force on a body equal to the weight of fluid displaced
by that body. This is Archimedes’ principle. This force acts through a center
of buoyancy which is the center of mass of the displaced fluid.

Fbuoyancy = ρairVpendulumg (1)

where: ρair is air’s density in kilograms/meter3, Vpendulum is the pendu-
lum’s volume in m3, g is gravitational acceleration in m/sec2.

2 Density of Air

Temperature, barometric pressure and the amount of water vapor in air all
effect air’s density. The relationship is complex.

ρair =
Pdry air

Rdry airTabs
+

Pwater vapor
Rwater vaporTabs

(2)

where: Pdry air is the pressure of dry air in Pascals, Pwater vapor is the pres-
sure of water vapor in Pascals, Rdry air is the gas constant of dry air in
Joules/kg ◦Kelvin and has the value 287.05, Rwater vapor is the gas con-
stant of water vapor in Joules/kg ◦Kelvin and has the value 461.495, Tabs
is absolute temperature in ◦Kelvin—add 273.15 to ◦C to get ◦Kelvin.

My laboratory equipment measures relative humidity which is then used
to determine Pwater vapor. This is accomplished by using the saturation



vapor pressure of water which is a function of temperature. Pvsat will denote
this value. Commonly, relative humidity (RH) is expressed in % and is given
by the formula:

RH = 100%
Pwater vapor

Pvsat
(3)

Next the saturation vapor pressure of water is given by the program:

def saturationVaporPressure( T ):

"""

from http://wahiduddin.net/calc/density_altitude.htm

A very accurate, albeit quite odd looking, formula for

saturation vapor pressure is a polynomial developed

by Herman Wobus (ref 2 doc at web site also file:

schlatter_baker_algorithms.txt

12/11/2006 checked with calculator at web site 0..30 deg C

where: Es = saturation pressure of water vapor, mbar

T = temperature, deg C

"""

eso= 6.1078

c0 = 0.99999683

c1 = -0.90826951e-2

c2 = 0.78736169e-4

c3 = -0.61117958e-6

c4 = 0.43884187e-8

c5 = -0.29883885e-10

c6 = 0.21874425e-12

c7 = -0.17892321e-14

c8 = 0.11112018e-16

c9 = -0.30994571e-19

p = (c0+T*(c1+T*(c2+T*(c3+T*(c4+T*

(c5+T*(c6+T*(c7+T*(c8+T*(c9))))))))))

Es = eso / p**8 # this is p to the 8th power

return Es

Barometric pressure in this article will ordinarily be expressed in millibars
or mbar. Multiply by 100 to get Pascals. Finally, using the law of partial
pressure:

Pdry air = Pbaro − Pwater vapor (4)



where: Pbaro is the absolute atmospheric pressure, and all pressures use
identical units.

Air has a density in the order of 1.2kg/m3 but it varies quite a bit with
temperature, barometric pressure and relative humidity. As this is a four
dimensional space, no single plot is of much use. Table 1 shows how each
parameter effects density. Also be aware that the density of air decreases
as the relative humidity increases. This is because water vapor molecules
H2O weigh less than the O2 and N2 molecules displaced by an equivalent
volume of water vapor. Temperature has the largest effect. Barometric

Table 1: Density of Air kg/m3

temp baro ρair for four values of RH
◦C mbar 30% 40% 50% 60%

10 1000 1.2286 1.2281 1.2275 1.2269
10 1010 1.2409 1.2404 1.2398 1.2392
10 1020 1.2532 1.2527 1.2521 1.2515

15 1000 1.2067 1.2059 1.2051 1.2043
15 1010 1.2187 1.2180 1.2172 1.2164
15 1020 1.2308 1.2301 1.2293 1.2285

20 1000 1.1852 1.1842 1.1831 1.1821
20 1010 1.1971 1.1961 1.1950 1.1940
20 1020 1.2090 1.2079 1.2069 1.2058

25 1000 1.1642 1.1628 1.1614 1.1601
25 1010 1.1759 1.1745 1.1731 1.1717
25 1020 1.1876 1.1862 1.1848 1.1834

30 1000 1.1436 1.1418 1.1400 1.1381
30 1010 1.1551 1.1533 1.1514 1.1496
30 1020 1.1666 1.1648 1.1629 1.1611

pressure’s effect, although smaller than temperature’s, is much larger than
the effect of relative humidity. The range of values for air density is 1.2532
at low temperature and high barometer and 1.1381 at high temperature, low
barometer and high RH. The range is 0.1151kg/m3.



3 Effect on Period

The period of a physical pendulum in a vacuum is given by:

t = 2π

√
I

mgd
(5)

where: t is the period in seconds, I is the moment of inertia of the pendulum
in kg m2, m is the mass of the pendulum in kg, g as before, and d is the
distance from center of rotation to the center of mass in m.

The term mgd in equation 5 is the gravitational restoring torque for a
pendulum in a vacuum. For most pendulum configurations the center of
buoyancy will lie on the line from the center of rotation to the center of
mass. If dcb is this distance then:

mgd→ (md− ρairVpendulumdcb)g (6)

Given pendulum density ρpend the volume of any pendulum is:

Vpendulum = m/ρpend (7)

Combining equations (5), (6) and (7) gives:

t = 2π

√√√√ I

mgd(1− ρair
ρpend

dcb
d )

(8)

Three interesting cases are seen in equation (8): dcb = d, 0 < dcb < d,
and dcb = 0.

3.1 dcb = d

Buoyancy’s effect is reduced in the ratio dcb/d. This ratio is 1 for pendulums
of uniform density and will be close to 1 for pendulum configurations with
a thin rod and heavy bob as we shall see in the next section.

Setting dcb = d equation (8) becomes:

t = 2π

√√√√ I

mdg(1− ρair
ρpend

)
(9)

Any effect of ρair on period will be found from the derivative dt/dρair:

dt

dρair
=

π I

mgd
(
1− ρair

ρpend

)2
ρpend

√
I

mgd

(
1− ρair

ρpend

) (10)



Dividing by period creates a normalized equation, B a ‘buoyancy error fac-
tor’, which effectively removes all parameters except densities and period.

B =

dt
dρair

t
=

1

2
(
1− ρair

ρpend

)
ρpend

(11)

Since the ratio ρair/ρpend is nearly zero equation 11 reduces to:

B =

dt
dρair

t
≈ 1

2ρpend
(12)

This remarkable result means that B is solely dependent upon pendulum
density. For example, suppose an all-tungsten pendulum has a period of 1
second in vacuum. Tungsten has a density of 19, 300 kg/m3. What is the
change in period from vacuum at ρair = 1.2 kg/m3?

B ≈ 1

38600
= 25.91× 10−6 (13)

Multiply (13) by t = 1sec to get dt/dρair:

dt

dρair
≈ 4t
4ρair

=
4t
1.2

= 25.91× 10−6 → 4t = 31.09× 10−6seconds (14)

Let’s check this result with my #8 pendulum which is a simple 7/8 inch rod
of brass (C360) about 0.844meters long. In this case:

I ≈ 4md2

3
, l = 2d (15)

t = 2π

√
2ml

3(m− ρairVpendulum)g
(16)

t = 2π

√√√√ 2l

3(1− ρair
ρpend

)g
(17)

l =
3g(ρpend − ρair)t2

8π2ρpend
(18)

Vpendulum = πr2cyll (19)

where: rcyl is the radius of the rod in m and is equal to 0.0111125m.
C360 brass has density 8490 kg/m3. Gravitational acceleration at my lab is



9.799147m/s2. To get a 1.5 sec period in vacuum, pendulum length would
have to be 0.8531804m.

B ≈ 1

16980
= 58.89× 10−6 (20)

Multiply (20) by 1.5sec to get dt/dρair. Then use the lower ρair:

dt

dρair
≈ 4t
4ρair

=
4t

1.1381
= 88.34× 10−6 → 4t = 100.55× 10−6sec (21)

At ρair = 1.2532 kg/m3 t = 110.71 × 10−6sec. So over the range of air
densities in Table 1 there will be a 10.16 microseconds variation in period.
This can be confirmed by using equation (17). The results are 100.55 and
110.72 with a range of 10.17—essentially the same.

If we look at variation per day then period also cancels out.

cycles

day
=

86400

t
; 4t = tB 4ρair; 4tday = 86400B 4ρair (22)

Table 2 shows an uncertainty in daily rate for pendulums built of various
materials. Uncertainty here means that if ρair is unknown then the daily
rate will be uncertain over say Table 1’s range of densities. This gives a feel
for the magnitude of buoyancy error. α, used below, is the coefficient of
linear expansion. This is used in the next section.

Table 2: Uncertainty of daily rate due to buoyancy effect

material density α B (buoyancy uncertainty
kg/m3 per◦C error factor) sec/day

fused quartz 2,200 0.40× 10−6 227.27× 10−6 ±1.13sec
invar 36 8,050 1.30× 10−6 62.11× 10−6 ±0.31sec
brass c360 8,490 20.5× 10−6 58.89× 10−6 ±0.29sec
tungsten 19,300 4.40× 10−6 25.91× 10−6 ±0.13sec

3.2 0 < dcb < d

For rod and bob pendulums the ratio dcb/d will vary depending upon the
relative mass and density of each part. Table 3 shows six examples of various



pairs of materials. Each pendulum is designed so that the bob is free to
move on the rod and is referenced at the bottom of the rod so that it
expands upward with temperature just enough to compensate for downward
rod expansion. All rods in this table are 1m long and pivot from the top.
Notice that the heavy tungsten bob on the fourth line has 96% buoyancy
error.

Table 3: Ratio dcb/d for temperature compensated pendulums.

rod(r1) bob/(r2) mass bob bob href dcb/d
m m kg m

invar(0.0015875) brass(0.030) 3.276 0.136859 0.999
invar(0.0015875) brass(0.005) 0.172 0.287125 0.995
quartz(0.003) brass(0.050) 2.704 0.040699 0.97
quartz(0.003) tungsten(0.020) 4.744 0.020009 0.96
quartz(0.003) brass(0.020) 0.487 0.046726 0.89
quartz(0.003) tungsten(0.005) 0.290 0.299792 0.79

3.3 dcb = 0

This condition will only be met in compound pendulums where the volume of
the upper half is exactly the same as the volume of the lower half. In addition
this pendulum must be axially symmetric about a line from the center of
rotation to the center of mass. This will place the center of buoyancy exactly
coincident with the pivot point. Naturally, the lower half will have to have
at least a slightly higher density for the system to oscillate.

One configuration of interest not only eliminates buoyancy error but also
can be compensated for error due to thermal expansion. A sealed tube of
any low α material which pivots at the exact center has no buoyancy error
because the upper and lower halves have the same volume. If a cylinder
of higher α material is selected with the correct length and placed at the
bottom of this tube then the bottom half has higher density and thermal
expansion can also be compensated. A 2m tube of fused quartz with an
inner radius of 20mm and a 2mm wall thickness fitted with a 97.021mm
cylinder of brass with radius 20mm (but free to expand upward from the



quartz tube’s bottom) meets this requirement. It would have a period of
2.33 seconds.

Computations to find dimensions for this type of pendulum are complex.
A computer program is available from the author.

Thermally compensated pendulums are subject to transient effects as
temperature changes. It is unlikely that rod or tube length changes will
exactly track bob changes. Period will vary until temperature stabilizes.

4 Pendulum Volume

Temperature changes the volume of a pendulum by a small amount. How
big is the effect on period?

ρpend =
m

Vref (1 + 34 Tα)
(23)

where: Vref is the pendulum volume at some reference temperature; m is
mass as before; 4T is the change in temperature from the reference point;
and α is the linear thermal expansion coefficient also called cle. For isotropic
materials 3α is a good approximation to the volumetric thermal expansion
coefficient.

Vref =
m

ρref
→ ρpend =

ρref
1 + 34 Tα

(24)

Brass has a large α and over a 10◦C temperature range, density change is
only 0.06%. Most other materials are have a much smaller α.

5 Practical Results

Environmental data is taken within the clock case by a module of my own de-
sign. Absolute temperature accuracy is ±0.5◦C with a resolution of 0.026◦C.
Absolute barometric pressure accuracy is ±1.5mbar with a resolution of
0.1mbar. Absolute relative humidity accuracy is ±2% with a resolution of
0.1%.

During 58 logging days in 2006/7 the average air density was 1.206532
but buoyancy error for my brass rod ranged from -0.74 to 0.61 parts per
million of period variation. (One ppm = 32 seconds per year.)

Changes in period are substantial. Figure 1 shows actual air density for
a 23 day logging run in Nov/Dec 2006 (top). Average density was 1.205383.
The lower plot shows rate error for a hypothetical brass pendulum which
only responds to buoyancy error—all other changes are set to zero. During
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Figure 1: Air Density and Rate Error by Date 2006.

the first five days, lower than average ρair shortens period and the clock runs
faster reaching 0.12 seconds fast. Then for seven days higher than average
density increases period and the clock slows to -0.23 seconds slow. For
three days density hovers (because of temperature change) about average
and a ripple shows in the rate curve. Because this hypothetical clock is
normalized for the average density during this run, rate error then returns
to zero following variations in density over the remaining time.

6 Conclusion

We have seen that, running in air, most pendulum’s period is changed by
buoyancy. Buoyancy error is a function of air density and pendulum density.
A method of computing air density from temperature, absolute barometric
pressure, and relative humidity is given. A table shows air density for a
range of environmental conditions.

Air density decreases with increasing temperature and relative humidity
and increases with increasing barometric pressure. As air density increases



buoyancy increases and period increases. In short, a clock slows as air
density increases. ρair is a complex function of environment, so mechanical
compensation would be difficult to achieve.

We have also seen that for a given air density, rate error is purely a
function of total pendulum density for most systems.

Buoyancy error can be completely eliminated in compound pendulums
where the volume above and below the pivot are identical.

This paper shows that what has historically been called barometric error
would be more accurately called buoyancy error since the effect is a function
not only of barometric pressure but also temperature and relative humidity.
Increase in temperature tends to compensate for increase in barometric pres-
sure. The decreased air density from temperature increase tends to make
a clock run faster and reduce the need for temperature compensation of
pendulum length.

End Note:
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