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Abstract

Two independent methods are used to model the change in period of a pendulum located
at a given latitude. The average daily effect from the position of the sun and the moon
on a pendulum is only zero at latitude 35.2644° (north or south.) Above or below this
latitude seasonal variation can cause time variations of many milliseconds. Over the full
19-year cycle of the moon’s orbit, time variation could reach hundreds of milliseconds.
Both empirical and mathematical methods are used to describe the effect.

1. Introduction

Tom Van Baak’s paperLunar/Solar Tides and Pendulum Clocksin HSN 2006-1introduced the
effect of tidal acceleration on pendulum clocks. This paper extends that, and subsequent work, to
show the mechanism by which the height (altitude) of both the sun and the moon above the local
horizon of a pendulum slightly changes system restoring force. As his paper shows, at any instant
the variation in restoring force is exceeding small. It is unlikely that any actual pendulum can be
made to show the tidal effect based only on change in pendulum period which is in the order of a
few hundred nanoseconds (see below.) However as these pendulum periods are added together to
show the time, a ripple in the order of about a millisecond will show up. This might be seen in a
super stable pendulum but other system noise is likely to mask this effect too. This paper will show
that the average tidal value is only zero near 35.25° latitude (north or south.) So, at higher latitudes,a
change of about 10 millisecondsor more could be seen if a pendulum was stable through the seasons
as we shall see.

For this paper I will assume a 1 meter simple pendulum which by some magic has constant
amplitude and hence constant circular error. The only change in the period will come from change
in the gravitational acceleration seen by the pendulum:

T = 2π√ 1
g − gm − gs

(1.1)

HereT is the period in seconds which is about 2.007 seconds. Alsog, gm, gs are the gravitational

acceleration of the earth here taken to be 9.82m/s and the others are for the sun and the moon which
are quite small aspreviously shown. Figure 1shows the geometry for findinggmorgs. The amount of
tidal acceleration is the difference between the acceleration of the body on the the pendulum and the
acceleration of the body on the center of the earth. Only the vertical component is needed because



the horizontal component, while it does pull the pendulum off vertical, is so small that I will ignore
it here. Clearly tidal acceleration depends on the distance between the body and the pendulumdO
and the angle of body above or below the horizon of the pendulum siteELE.

All this changes with the rotation of the earth and the orbits of both the sun and the moon. Here
t represents this time expressed UTC. We will need some ephemeris to give us the distance and
elevation. Two different systems will be used here. One,tides, includes a built-in ephemeris. The
other,readHorizons, requires an ephemeris generated by JPL’s Horizons online system but which is
of the highest accuracy available today.
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Starting from Newton:

F = ma, F = GMm
2d

(1.2)

whereF is a force vector,m is pendulum mass andM the other body,G is the gravitational constant,
andd is the distance between the bodies. We want to get rid ofm and so we combine the two
equations to work in terms of accelerationa or in our caseg.

g = GM
2d

(1.3)

We are only interested in the vertical acceleration at the pendulum so we resolve the acceleration
vector by multipling bycosPA. Finallytidal accelerationfor a rigid earth is given by the acceleration
at the pendulum minus the acceleration at the center of the earth.



gtidal = GM
2dO
cosPA− GM

2d
cosP (1.4)

The law of cosines, bodyELE,and distancedO can be used to compute tidal acceleration for the
sun or the moon directly but it is hard to visualize the acceleration field from this equation. So we
eliminatePAanddO. Reference 1 shows the relationship of tidal acceleration of the sun or moon
for a rigid earth (accuracy of better than 0.05%) to be:

2d = 2r + 2dO − 2rdOcos(90 +ELE) (1.5)

cosP =
2dO − 2r − 2d
− 2rd

(1.6)

gm =
GMmoonr

3d
(3 2cosP − 1) +( 3

2)GMmoon
2r

4d
(5 3cosP − 3cosP) (1.7)

gs =
GMsunr

3d
(3 2cosP − 1) (1.8)

References 1, 2, 3 and 4 all show how all these results are derived.

Radiusr is given by Longman (ref 1) to be:

c = 1
√1+ 0.006738sin Lat

(1.9)

r = 6.37827× 810 c + Elevation (1.10)

herer is in cm. WGS-84 (1984) uses an equitorial radius of 6,378,137 m and 6,356,752.3142 m
as the polar radius. If 0.006739497 replaces 0.006738 and WGS-84 equitorial radius is usedr
matches WGS-84’s ellipsoid very closely. Reference 7 helps explain that the geocentric radius and
the geodetic radius are not the same and shows the size of the error in Lat to be at most about 0.2°.
In short at various latitudes a plumb bob doesn’t actually point to the center of the earth. I will use
Longman and ignore these small errors.
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In this model I use a constant value ofgbecause we are only concerned with variations ingsand
gm and remove the average value of period in any case. This is also a good place to point out that the
average values ofgs andgm are rarely zero. So in our case the average value of these accelerations
are also removed by averaging the period.

The second factor of the first term ofgmoonis (3 2cosP − 1). So at eitherP=0 orP=180 cos2 is
1and the factor is +2. AtP=90 cos is 0 and the factor is -1. Only atcosP= √1/ 3or 54.74° (and the
symmetrical points) is the tidal acceleration actually zero. AnglesP andPAare always nearly equal
because the body is so far away compared to the radius of earth.ELE is 90-PAand approximately
90-P so elevation below angle 90-54.74=35.26° results in a negative acceleration even though the
body is still visible and would seem rather high in the sky.

The productGM can be measured astronomically with great accuracy butG or M are known
to much lower precision. Thesestandard gravitational parameters GMsunandGMmoonare given in
the header to JPL ephemeris results and are 1.32712440018× 1110 3km -2s and 4902.798±0.005 3km
-2s respectively.

So far we have tidal acceleration for a rigid earth. The earth isn’t in fact rigid and there are
harmonic vibrations seen at the surface caused by tidal forces on our home sweet home. These tend
to increase tidal acceleration actually seen at any point on the globe. References 3 and 4 go into this
in some detail. Generally I will use 1.16 from reference 6 as a factor for the observed values ofgm
andgsun in effect increasing them by 16%.

Earth varies from around 356,400 km to 406,700 km at the extreme perigees (closest) and
apogees (farthest) from the moon. At perihelion, the Earth is about 0.98329 astronomical units (AU)
or 147,098,070 km from the sun. The distance of the aphelion is currently about 1.01671 AU or
152,097,700 km. (Reference 9)

So the maximumgsunat the equator and sun directly overhead (cos = 1) when the sun is closest
to earth is:

gs =
2GMsunr

3d
= 5.3188× −710 (m/ 2s ) (1.11)

moon: gm =
2GMmoonr

3d
+

3GMmoon
2r

4d
=

2GMmoonr
3d ( 1+ 3r

2d ) = 1.4234× −610 (m/ 2s ) (1.12)

The second order term contributes a bit less that 2.7% of the total and can never be more that
this. These maximum values are subtracted fromgand make the clock slower. Minimum values are
found at cos = 0. The second term for the moon is now zero and -1 replaces 2 in the equations. For
the moon the minimum is− 6.9309× −710 (m/ 2s ) and − 2.6594× −710 (m/ 2s ) for the sun. These are
rigid earth numbers and need to be increased by 16% to give their total effect.

2. Getting Tidal Data

A line from the JPL Horizons ephemeris for the new moon on Oct 26, 2011 at my location Lat
37.365°N Long 122.083°W is:



Date        Hour  vv  Azimuth   ELE     dO (in AU)         delta dO
2011-Oct-26 00:00 *m  251.3203   3.5630 0.00238539911047   0.3280682

On this day the moon was as high as 36° above my horizon and as low as -66° below tracing out
a graceful sine curve. One AU is 149597870.691km. Just ignore vv and delta dO fields as we don’t
need them. We don’t need Azimuth either as we are ignoring any horizontal component ofg.

To use JPL Horizons go to http://ssd.jpl.nasa.gov/horizons.cgi#top and use the change buttons
to set:

set Ephemeris Type to OBSERVER

set Target Body to Moon [Luna] [301] or Sun [Sol] 10

set Observer Location to pendulum latitude, longitude, and elevation

set Time Span as needed

set Table Settings via check boxes 4 and 20 only

set Display/Output to download/save

Then press theGenerate Ephemerisbutton to create a file. A cookie on your computer saves this
information for the next request. A file ’horizons_results.txt’will be stored in the download directory
used by your web browser. See reference 10 for the Horizons documentation and accuracy.

Downloaded files are all given the same name by Horizons and need to be renamed to be used
because at least one ephemeris each for the sun and moon are needed. ProgramreadHorizonsis
available to process the files downloaded by Horizons. ForreadHorizonsdon’t check the CSV
format checkbox in ’Table Settings’. My program has several options to produce output for further
processing and spreadsheet use. (Contact me for a copy.)

Longman’s equations for tidal acceleration and the position of the sun and the moon were
captured in a Basic Language program by J. L. Ahern in 1993. (Reference 8) Tom Van Baak
translated this program to the C Language. It contains a set of equations needed to compute the
termsd and cosP as well asr for a given latitude. It is fast and easy to use. I modified the program
to remove a 12 hour error introduced in the translation from Basic to C and added a number of
output formats.

3. Verifing the Software

With JPL Horizons it is safe to assume that the results are as correct as modern technology can
provide and that many people are dependent on correct results. But the system is complex and it is
a good idea to have a confidence test to be sure we know how to get the actual data we want and to
see that it at least matches what we see out the window.

By measuring the angle 22° cast by a pin on a board at 17H UTC on Nov 7, 2011 at (37.365
-122.084) and comparing it to the result given by Horizons of 22.7871° for the sun at that date and
hour I concluded that JPL data was as expected.

readHorizonwas tested to be sureELE and dO were read correctly from the JPL input.



Computing gbody is quite straight forward using equations 1.4 to 1.6 above. Equations 1.7 and 1.8
are derived from a series expansion and are quite accurate and used intidesbut are not used in
readHorizons. Next tidesandreadHorizonsoutput were compared for a long sample of data from
Jul 1, 2011 to Dec 30, 2012 some 549 days with hourly samples for a total of 13176 comparisons.

The results are below. Given the difficulty of predicting the moon with accuracy the agreement
is remarkable.

moonµGal sunµGal

average difference -0.0082 0.0011

minimum difference -3.236 -0.104

maximum difference 2.928 0.0646

Finally reference 11describes an accurate gravitometer built at Stanford University. A nine day
run is plotted in the paper and I used readHorizon to show gravity at that laboratory and during that
time in early 1997. To a best visual approximation both JPL andtidesmatch their result.

So although all times and locations cannot be checked, I am reasonably confident that the
software presents correct results.

4. Two days near new moon Sept 2011

Using JPL Horizons and readHorizons an ephemeris for the sun and the moon were created for
two days centered on a new moon:
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Chart 1a.  Two days with New Moon at 9/27/2011 11:09 UTC (near center)
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Near new moon both sun and moon appear together in the sky,so Chart1a shows both elevations
together (moon heavy black, sun heavy grey.) The range is about +50° to -60°. Note that the tidal
acceleration (here in microGals) oscillates twice as fast as elevation. Figure 2 above shows why that



is so. The curves are moon in thin black and the sun in thin grey. Also notice how each body has
to be well above or below the local horizon before the acceleration is positive (up) thus making the
period longer (clock slower.) This is because tidal acceleration (positive up) is subtracted from earth
acceleration – lessg slower, moreg faster.
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Next in Chart1b we have the actual variation in pendulum period here shown in grey in a
nanosecond scale. The variation of ±100ns is likely too small to measure in a real clock. But, and
this is the main point of this paper, if we add up these small variations from the average period we
see a ripple in the cumulative time deviation (CTD)curve (which should be just a flat line) of -1.2ms.
This is due to the constantly changing position of the sun and moon over days, seasons, years and
latitude of the clock. This CTD adds up the differences between actual period at each instant of time
and the mean period for the whole interval. Appendix A details the computation and discusses some
of the side effect of this method of analysis.

5. Two Years and Eight Latitudes

JPL ephemerisdata for latitudes0° to 90° in steps of 15° plus latitude 35.25° for both the sun and
moon were created. The longitude was -122.084° at sea level. One of the modes ofreadHorizons
was used to process all of this data to create a huge table of tidal acceleration and CTD ripple at each
position and each hour for two years. Chart 2 shows CTD ripple at three latitudes 30°, 35.25°, and
45° for 2 years on a millisecond scale.

Chart 3 summarizes all this data. On the top trace (diamond markers) notice that average tidal
acceleration is positive and highest at the equator and drops off to zero at about 35.25°. Then above
that latitude it is negative and reaches its lowest at the pole of less than -60µGal.

CTD ripple range (circle markers) also change with latitude. At the equator the range is 16 ms
and tends negative with the seasons. At 35.25° the range is at a minimum of 2 ms and has no seasonal
trend. Above this latitude the range increases again to 10 ms at 45° and has a maximum of 32 ms at
the pole.



To emphasize, to get the CTD ripple the period of our hypothetical clock (equation 1.1) is
computed using the total gravitational acceleration seen by the pendulum. This is earth’s assumed
constant pull plus or minus tidal acceleration from the sun and moon. If these bodies are high in
the sky, either above the horizon or far below it, the pull is upward and tends to cancel out some of
earth’s pull –g gets smaller period gets larger and the clock seems to run slow. With the body near
the horizon the effect is reversed. Once all these period values are computed for each latitude, the
average period is computed. Next 3600 (because the samples are hourly) is divided by the average
period to get the number of cycles per hour of the clock. This number, which is just less than 1800,
is multiplied by the current clock period minus the average to give an approximation of the period of
the clock that hour. Starting at zero, each of these small differences from the mean clock period are
added one by one to give Chart 2 shown. If the clock is in a season where tidal acceleration is a bit
higher than average, the CTD ripple curve will trend down because the clock will be slow compared
to average.
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In chart 2 the seasonal changes are clearly due to the sun. In chart 3 the trace with diamond
markers cleary shows that the average tidal acceleration is greater below 35.25° and less above that
latitude. This means that, in addition to the ripple, clocks below 35.25° actually run a little slower
while ones above run faster. This is not the same effect as the change ing due to latitude because of
the ellipsoidal shape of the earth. The elliptical orbit of the earth with the sun closer to the earth in
the northern hemisphere winter explains part of this variation.

In chart 2 for the ripple at 35.25°, the effect of the sun is quite small and little yearly trend can
be seen. The moon’s distance from the earth varies a good deal but the average effect is small over
years.

6. Analytic Exploration of Longer Periods

To extend our understanding of these effects we need to move from empirical work to a
more analytical approach. A widely-used method of mapping celestial objects is theequatorial
coordinate system. Here the sky is mapped much like the earth using the earth’s axis and equator
as reference. In this systemdeclinationis used like latitude to give a body’s angle above or below
the equator. Longitude is given byright ascensionreferenced not to Greenwich but to the vernal
equinox point. To relate right ascension to a given longitude one needs the time and date to find the
hour angle. Any number of references explain this is a good deal more detail than is warrented here
(reference 12 for a start). Spherical trig gives us a way to convert equatorial coordinates to angleP.
(Reference13, ref 1 eqn 15, and ref 2 eqn 31.)

cosP = sin Lat sin Dec+ cosLat cosDeccos(HA− 180°) (6.1)

In a year, the declination of the sun moves slowly from -23.44° (about) at the winter solstice
to 0 at vernal equinox to 23.44° at summer solstice and then to 0 at autuminal equinox before
repeating the cycle each year. So on any given day the value of the sun’s declination doesn’t actually
change much.

The moon’s orbit is inclined to the plane of the earth’s orbit about the sun by 5.145°. Each
month the moon declination will be ±5.145° from the declination of the sun. The moon’s maximum
declination of 28.585° can only happen when both the sun’s maximum declination (northern
hemisphere summer soltice) and the moon reaches its maximum angle of 5.145° from the ecliptic
plane at the same time. This is rare. (Reference 14.)There are days when the declination of the moon
changes as much as 4° but ordinarily the number is much smaller. It is easy to get declination and
right ascension from JPL by switching item 4 in table settings to item 1.

Note that the average declination of the sun over a year is zero. Over a single orbit the average
declination of the moon will be about the average declination of the sun during that period.

We have seen that, in a day, the value of tidal acceleration varies quite a bit and can only be
found from the exact location of the sun and the moon. Over about a day however the average tidal
acceleration is mostly dependent on the declination of sun/moon and latitude. Noting that the factor
cos(HA− 180°)in equation 6.1runs 0 to 360° (about) in one day we can find an approximate amount

by which
GMbodyr

3d
will be multiplied to give the average tidal acceleration any day given pendulum

latitudeLat and body declinationDec. Lettingx stand in for(HA− 180°)and assuming that Dec and



Lat are constant.

average daily tidal acceleration factor= 1
2π

2π

∫0
(3 2cosP − 1)dx (6.2)

Next we can substutite equation 6.1into 6.2 and carry out the integration and simplification and
find a relation in declination and latitude only.

((3 cos(2 Dec) − 1)(3cos(2 Lat) − 1))
8

(6.3)

Next we can plot for all latitudes and some sample declinations the curves that give this tidal
acceleration factor:
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Chart 4. Tidal Acceleration Factor
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Note that all these curves pass through zero at a single location which is arccos√2/ 3or 35.2644°
matching the results in section 5. For declination 0°, range is maximum at 0.5 to -1.0 also matching
the empirical results above.

Referring back to Chart 2 we see what is happening. At 35.2644° (we now know more exactly)
average daily gravity is zero and during any day our example clock will have CTD ripple of about
1 or 2ms. In each month, the ripple will increase both below and above this latitude. The moon is
seen in the full CTD curve but the variation is still small. The big effect is in the seasons as the sun
take 3 months to move 23.44°. For example at 60° North or South this factor is -0.625 at declination
0 and -0.3283 at the tropics about 23.44°. So over these 3 months, the clock has time to accumulate
this small change ing. This gives the much larger change at 60° of more than 20ms.

7. National Tidal Datum Epoch (1983-2001)

The people who do tides for a living (NOAA) have shown that a 19-year period is a good
interval for evaluating the long term variations in tides. (see Reference 15) A figure in that document
shows 20th century tides at Seattle, WA and shows clearly a roughly 19-year pattern. This period
coresponds to the precession of the moon’s orbit with respect to the plane of the earth’s orbit which
takes just under 19 years.
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Both the sun and moon have a large influence on tides. I examined a 19-year period starting
in 1983 and continuing for 19 years throught 2001 to match the last complete NTDE. (see also
Reference 16) By chance, data for chart 1 through 3 was taken just after the middle of the current
epoch.

Using tides, I produced 6 files of hourly data from Jan 1983 through Dec 2001 for 6 model
pendulums located at 51.5° (Greenwich UK), 41.6° (Seattle, WA), 37.4° (Los Altos, CA), 35.2644°
(the still point), 19.6° (Kailua-Kona, HI), and finally at the equator. I wrote a small C program to
average and summarize the results. I made an average ofg over a 29.53 day month then created a
CTD curve for each pendulum latitude.

Chart 5 shows the monthly value of totalg for six latitudes. The northern most is Greenwich.
Ripples are due to the sun through the seasons with two cycles per year as shown in chart 2. There
is also a sine like wave with lowerg for the first half of the epoch then rising in the second half. A
dotted lines show averageg. This corresponds to the precession of the moon’s orbit over about 18.6
years. At latitude 35.2644° only a small ripple is seen from lunar/lunar variations. Below that point
the phase of the ripples is shifted by 180° for both the lunar cycle and the seasonal cycle.

Above latitude 35.2644° the pendulums see higher averageg and thus have a smaller period
and appear to run fast compared to the one at the still point. Below is opposite and those appear to
run slow. This matches the results before and is clearly predicted by the equations at the beginning
of this paper.

Chart 6 is created to show how over this long 19 year cycle clocks above and below the still
point actually accumulate a lot of error. At the equator the CTD will be 0.3 seconds slow. At
Greenwich 0.25 fast. These curves are created by removing the average period of each pendulum
to just show the variation over 19 years. Remember that only an absolutely stable pendulum could



show this effect.

Figure 6 has the shape it does because the 1983-2001 epoch was chosen because it aligned
with the 18.6 year period of the rotation of the nodes of the moon. If a 19 year plot had been made
starting in a different year the shape of the curves would be phase shifted but always 1/2 cycle of a
sine-like curve. The minimum and maximum deviation from zero would completely change but the
range (max - min) will always be nearly the same - 0.25 seconds at Greenwich and 0.30 seconds at
the equator.

Figure 7 isolates the period of a pendulum at Greenwich and subtracts the mean period of
2.00708989936 seconds. The chart shows that the overall range of values is ±6 nanoseconds. Two
smooth curves are also shown. One is a smoothing function known as ’lowess’ in statistics. The
other is sine curve with amplitude 2.6 nanoseconds and a period of about 18.6 years. Both match
quite closely.

Please refer again to Appendix A if necessary. The multiplying factor for the sum for the
CTD is in this case 1,271,190 or 29.53×24×60×60/avgPeriod. For the first 9.3 years of this 18.6 year
cycle the period is mostly longer than the mean. A quarter of the way into the 18.6 years even the
deviation due to the sun is mostly above the mean. These account for the 0.25 second result. the
average deviation from the mean in this case is about 1.3 nanoseconds which is consistant with the
plots shown.

8. Summary

In this paper I have shown the mathematical model used to compute the effect of tidal gravity
variations on a pendulum. Two methods of obtaining an ephemeris for the position of the sun and
the moon for any location on earth are shown and checked for accuracy. CTD chartsare used to show
how integration of very small changes ingadd up nanoseconds to millisecondsvariations. Examples
from a couple of days to 19 years are used to demonstrate the effect. An approximate analytical
model is developed to show the latitude where tidal effects are constrained to daily effects. The
mathematics has been checked with both the Mathmatica and Maxima symbolic algebra systems.
This latitude is 35.2644° (north or south).

Few to no current or historical pendulums have had the long term stability to show the effects I
have described. Perhaps future attempts can use the information here to remove one of the physical
effects that change clock period.
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10. Appendix A: Cumulative Time Deviation (CTD)

Generally we have a sequence of N values, pendulum period, from an average of k seconds of
a pendulum operation. Call this sequencexi where i goes from 1to N. Themeanperiod denoted by
µ is:

µ = 1
N

N

∑
i =1

xi (10.1)

The way a clock works is to add up each period by some means to show the time. A plot of this
will just be a very slightly wavy straight line starting at 0 and going up and to the right. To see that
waviness directly we have to subtract the mean from each period so the plot will generally stay near
the x axis.

∑(xi − µ) (10.2)

To get CTD in seconds we have to multiply the sum by the number of pendulum cycles in k
seconds, that is, k divided by period. The period could be eitherµ or xi. In this paper I will useµ
for simplicity because with tides the difference betweenµ andxi is always very small. The correct
formulations are then:

CTDi = k
µ

i

∑
j =1

(xj − µ) (10.3)

or CTDi =
i

∑
j =1

k
xj

(xj − µ) (10.4)

Now we have at every instant of time in a test interval, (CTDi) the difference, in seconds, of a
clock affected by tidal gravity variations from one (magically) not affected.

The sensitivity of CTD as an analytical tool has features worth further discussion. First, with
tides, period variations are all a sum of sinusoids with different amplitude, frequency and phase.
Moreover they are periodic in various cycles. Water tides are predicted usingHarmonic Analysis
which is detailed in both reference 15 and 16. A CTD curve will always repeat, or nearly repeat,
with the underlying periods. This means that the shape of the curve for the same periodicity which
is started at various instants of time will be phase shifted from one started at another times. I did
several experiments that showed the the range between the maximum and minimum values on the
curve will always be the same for a fixed periodicity and sample interval.

Secondly, longer periodicitiesand longer sample intervals will show a larger range of deviation.
In a day there aren’t enough cycles of the pendulum to add up to much. For a 19 year run the far
larger number of cycles in the test and the long periodicity of the moon is the cause of much greater
CTD range.

Thirdly, it does make a difference when a test is done because the configuration of the sun and
moon are constantly changing. Any sailor will tell you that it makes a big difference if the tide is
slack, max flood or max ebb. Here in the SanFrancisco bay some boats aren’t even fast enough to
outrun the flow near the Golden Gate Bridge. The sine wave shown in Figure 7 shows the change in
pendulum period - small and slow as it is. The derivative of sin(x) is cos(x). So the rate of change of
pendulum period runs from a factor of 1through 0 to -1in each cycle. A test run at 1will be different



from one run at zero. A CTD curve will reflect this difference.

Finally, this form of analysis can be extended to other pendulum parameters such as tempera-
ture, barometric pressure, relative humidity, drive, and so on. CTD is a very strong low pass filter. I
do find that it is useful to compare a CTD curve with one created in the same way for temperature
or barometer.
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